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Goals

Last time: Introduced ideal observer for a Yes/No task: high or low dot density?
The accuracy and reliability of perceptual decisions are limited by two primary sources: 

1) inherent uncertainty in the stimulus information for a specific task

2) limitations of the human observer.

Last time we focused on the notion of ideal observer. The "ideal" has a model of the inherent uncertainty (i.e. "external 
variability"), and makes optimal decisions given that variability or uncertainty. We stated that the ideal observer should 
choose the hypothesis (e.g. the switch setting in our prototypical light discrimination task) with the highest posterior 
probability, given the data (photon count). This decision process is an example of Bayesian inference. Bayesian theories of 
vision provide quantitative models of the information available in a task. 

It is important to distinguish between uncertainty inherent to the task from uncertainty specific to the biology when 
drawing conclusions about the underlying neural mechanisms of the brain from behavioral/psychophysical data. Because 
of biological limitationsm, such as internal variability, humans are typically not ideal observers. But suppose we are 
approximately ideal at some task. Then that the pattern of errors would largely reflect the uncertainty in the task itself. If 
this is the case, then our simplest conclusion about the underlying neural mechanism is that it behaves like an ideal 
observer, i.e. as a very efficient utilizer of the information available. The ideal observer would then provide a good 
quantitative model of human perceptual behavior. However, ideal performance by a human observer limits our ability to 
draw conclusions about the neural mechanisms, which are can be revealed by sub-ideal behavior. In actuality, human 
perceptual performance is near optimal for some tasks, and not for other tasks. Hecht et al. argued that the variation in the 
proportion of hits was largely due to photon fluctations, with only smaller contributions from limitations of the human 
observer, suggesting that the variability was due to a high efficiency of photon transduction. Once we account for photon 
loss in the periphery, humans are almost ideal. What about other tasks?

We'd like to further develop our tools  of signal detection theory, and extend them to perceptual decisions more generally, 
so that we can quantitatively compare humans to ideal observers. We call this comparison  ideal observer analysis. The 
ideal can be used as a benchmark to measure the  performance of humans, as well as machines, and even single neurons 
for more complicated problems like pattern detection.

Today: Classical SDT and d’
In this lecture we complete our introduction to classical signal detection theory (SDT). SDT provides an important set of 
tools for measuring and modeling the sensitivity of human and neural perceptual decisions. (Later we'll generalize further 
to "statistical decision theory"--same acronym!) We will: 

o Understand how to summarize ideal (and human performance) in the yes/no task in terms of hit and false alarm rates, 
and to relate these to a sensitivity measure called d'. To do this, we will introduce the (standard) Gaussian approximation, 
and apply it to variability in light levels.

o Introduce other tasks. In particular, the two-alternative forced-choice task 

o Understand how to quantitatively compare human and ideal performance.  

o Measure your own statistical efficiency in a 2AFC task  
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What we learn today will provide the basis for addressing the question: What does the eye see best?

Signal Detection Theory: Gaussian model
Most inference modeling is done using Gaussian models of variability. One reason is theoretical convenience. A deeper 
theoretical reason rests on the Central Limit Theorem, which says that a sum of independently drawn random variables 
(from a non-Gaussian fixed distribution) looks more and more Gaussian the more elements that are in the sum. Empiri-
cally, many experiments on human signal detection have been well-fit by assuming Gaussian distributions. However, as 
we will see later (when we measure statistics on natural images), the Gaussian assumption/approximation for image 
random variables is a bad approximation. It is always important to test this assumption. We'll first show that the Gaussian 
approximation provides a good approximation to the Poisson distribution.

Some terminology. We've adopted the convention of treating a switch set to high dot density (or on average, brighter light)  
as a "signal". Similarly, we can think of the low switch settings as playing the role of "noise". We will continue with this 
here, and use the terms "signal" and "noise". But remember that this is just a convention--the problem is symmetric, and 
we could be talking about whether a measurement is from hypothesis A vs. hypothesis B.

What does i.i.d. mean?

Gaussian approximation for signal and noise distributions
As the mean a of a Poisson distributed random variablegets large, the frequency of occurrance of  can be well approxi-
mated by the Gaussian  distribution:

p HX = xL =
‰
-
Hx-mL2

2 s2

2 p s
. The mean or expectation of X is : E HXL = m,

and the variance is : var HXL = s2

This approximation is useful to estimate probability values for large a. If a is large enough, the probability of negative 
values (which is meaningless for a Poisson distribution) is very small. For computational convenience and for later 
generality, we will usually use the Gaussian approximation. 

Let's compare the forms of the Poisson and Gaussian distributions:
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In[17]:=
ManipulateB

ndist = NormalDistributionBmean, mean F;

pdist = PoissonDistribution@meanD;
p1 = Table@PDF@pdist, xD, 8x, -5, 50<D;

g1 = ListPlot@p1, PlotStyle Ø RGBColor@1, 0, 0DD;
p2 = Table@PDF@ndist, xD, 8x, -5, 50<D;

g2 = ListPlot@p2, Joined Ø TrueD;

Show@8g1, g2<, PlotRange Ø 88-5, 50<, 80, .3<<D, 88mean, 10<, 2, 40<F

Out[17]=
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Try comparing the Poisson and Gaussian approximation when the mean is much smaller, like a=4. 

‡ Note: Discrete vs. continuous distributions

The Poisson distribution represents probabilities of a random variable taking on integer values. The distribution is said to 
be "discrete". In contrast, the Gaussian distribution is continuous. A continuous distribution is represented by a probability 
density  meaning that we use it to determine the probability of a Gaussian random variable falling within a certain range.  

We can interpret this approximation in two ways. We can discretize the continuous Gaussian function (as above) to give 
us a set of  probabilities (over integers) that closely match those of the corresponding Poisson distribution, and make sure 
that the discrete sum is one (a fundamental requirement for a probability distribution). Alternatively, as the photon count 
gets high, we can treat light intensity as a continuous quantity (abandoning our quantized notion of light magnitude). In 
this latter case, we would treat the random variable X (light intensity) as being a continuous variable with a continuous 
probability distribution or "density". Then, because there is an infinite number of possible values over any finite range, the 
probability of X=x, for any particular value (x = ˛, or x = 3.1, for example) is actually zero! To fix this, we treat p(X) as a 
density (as in mass density in physics), rather than a probability (as in mass).  Then we can put a non-zero number on the 
probability of X taking on a value x in some small region, dx as: 

p(x<X<x+dx) ~ p(x)dx. 

More on this later.
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Summarizing performance for an ideal observer
An ideal observer can be characterized by its signal-to-noise ratio, or by its performance in a task, such as Yes/No.

‡ The classic Standard Additive Gaussian generative model for signal discrimination

Let's approximate our photon inspired model with a view towards generalization. We will express the generative model as 
an "additive gaussian model". This is a standard form used for all kinds of detection tasks, for visual and auditory patterns, 
as well as non-perceptual decisions. We can model the shift of the peak of the distribution as an additive offset to the mean 
of a Gaussian. Then we have:

H = SH: x =  b + noise;

H = SL: x = d + noise;

where noise is a Gaussian distributed random variable with mean, m = 0, and standard deviation s. 

For the photon counting case, b=highmean, and d=lowmean. ("b for bright" and "d for dim"). Note that the standard 
deviations of the high and low distributions would, for a Poisson distribution, be different (variance = mean for Poisson). 
We will assume that for a typical discrimination task, the distributions are quite close together, so the standard deviations 
are almost equal. The assumption of Gaussian distributions with equal variance is common, because it simplifies calcula-
tions, but more importantly because in many practical cases of  discrimination, the approximation is pretty good.

Here is a plot of the theoretically predicted histograms for a signal (high) mean of 15, a noise (low) mean of 10, and a 
standard deviation of 4 for each:
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In[18]:=
gauss@x_, mean_, std_D :=

‰
-
Hx-meanL2

2 std2

std 2 p
;

H*Define our own gaussian distribution*L
b = 15; d = 10; sigma = 4; max = gauss@0, 0, sigmaD;
Manipulate@
Plot@8gauss@x, d, sigma2D, gauss@x, b1, sigma2D<, 8x, -5, 30<,
AxesLabel Ø 8"x", "p"<, Filling Ø Axis, PlotRange Ø 80, max + 0.25<,
Epilog Ø 8Text@"mS=b", 8b1, 0.11<D,

Text@"s", 8b1 + sigma2 * 1.4, HExp@-.5D ê HSqrt@2.0 * PiD * sigma2LL<D,
Line@88b1, HExp@-.5D ê HSqrt@2.0 * PiD * sigma2LL<,

8b1 + sigma2, HExp@-.5D ê HSqrt@2.0 * PiD * sigma2LL<<D,
Text@"mN=d", 8d, 0.11<D<D, 88b1, b, "m=b"<, d, 30<,

88sigma2, sigma, "s"<, 1, 6<D

Out[20]=

m=b

s

‡ The signal-to-noise ratio: d', a summary statistic for ideal performance

It is easier to discriminate a difference between bright and dim when the mean difference, b - d, is big. But it is also easier 
if the standard deviation s is smaller.

By using Gaussian distributions (with equal variances), we can characterize the ideal's signal-to-noise ratio with one 
number, the "signal-to-noise ratio," defined as  d’:

d' = b-d
s

where b and d are the high and low means, respectively. 

This makes intuitive sense. Discrimination should get easier as the difference between the means increases (the "signal" is 
the difference) or as the spread given by the standard deviation of the additive noise (s) decreases--hence the term signal-
to-noise ratio. 

But what does this mean in terms of performance?
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‡ Review criterion for MAP and maximum likelihood decision to minimize error

How does the ideal observer make a decision as to whether the low or high light was flashed? Earlier we derived a crite-
rion starting from the assumption that we wanted to  maximize the posterior probability (p(H | x) over H. Shorthand for 
this rule is:

1) argmax
H

 p(H|x)

Which means "find that value of H (e.g. H = switch high vs. low) which makes p(H|x) the biggest". 

From here, we showed that if the prior probabilities over the hypotheses were the same (p(H=SH) = p(H=SL), this was 
equivalent to  maximizing the likelihood:

2) argmax
H

 p(x|H)

Because we are considering only two hypotheses, we could reformulate the decision strategy to testing whether the ratio

pIx SH M

pIx SLM
 > 1 ? This in turn, is equivalent to testing: log[

pIx SH M

pIx SLM
] > 0? 

The previous lecture applied this rule to light intensity discrimination. We showed the decision could be based on whether 
the photon count was bigger than a particular criterion (call it XT ) determined by two light level means (b and d).

Graphically, the ideal that minimizes its error rate makes its decision by deciding "high" if the measurement x is right of 

the cross-over point on the above plot (i.e. x where  
pIx SH M

pIx SLM
 = 1 )

This minimizes the probability of error, but how is error related to the decision criterion and the distributions?

Let's first consider the more general case, where the criterion isn't necessarily at the cross-over point.

‡ Performance metrics: hit, false alarm, miss, and correct rejection rates for arbitrary criteria

It is easy to imagine how one might experimentally measure the signal-to-noise ratio for light discrimination for the ideal 
observer—we just collect histograms under the two conditions (H=SL and H = SH ), approximate them by Gaussian 
distributions (giving us two conditional probability distributions), and assuming the standard deviations are close, use 
these Gaussian fits to estimate d'. We simulated doing this kind of thing in the last couple of lectures.

But how could we possibily measure the signal-to-noise ratio, or d' of a human observer? 

Human decisions are based on some hidden, and probably quite complex neural mechanism in the brain. It seems like we'd 
need to have access to a neural response that behaves like the ideal's decision variable, but is consistent with human 
performance (which is usually sub-ideal). This is an interesting scientific problem, but let's see if we can put a number on 
human d', without "going inside the box".

To answer this question, let's take a look at an alternative way of estimating d' for the ideal observer. The ideal observer 
(or receiver) for light intensity discrimination has two ways of being right and two ways of being wrong: 
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‡ Two ways of being right and two ways of being wrong in a Yes/No task

Being correct:

it can score a

 hit (e.g. says "high" when the switch was set to high)

or a

correct rejection (e.g. says "low" when the switch was set to low)

Being incorrect:

it can suffer a 

false alarm (also called "false positive") (e.g. says "high" when the switch was set to low)

or a 

miss (or "false negative") (e.g. says "low" when the switch was set to high)

(Statisticians talk about a similar distinction in terms of Type I (false positive) and Type II (false negative) errors). 

‡ Rates

Average performance in a yes/no task is completely characterized by calculating the proportions of two of the four. Hit 
and false alarm rates can be treated as estimates of conditional probability distributions, p(response | switch setting, H). 
For example, 

hit rate =  Ò times observer says high when switch was set to high
Ò times switch was set to high  

 ~ p(decide high | switch set on high)

 

false alarm (positive) rate =  Ò times observer says high when switch was set to low
Ò times switch was set to low  

 ~ p(decide high | switch is set to low)

Sometimes, we talk about the average error rate. Since there are two ways of being wrong: Deciding "high" when 
H = SL, and deciding "low", when H = SH . The total error rate is the (weighted) average of the miss and false alarm rates. 
The error rate is determined by the mean values for the high and low settings. As b increases, the separation between the 
probability distributions increases, and the overlap decreases, so the error rate decreases. So intuitively, there should be 
some relationship between d' and error and/or success rates.

We only need measures of these two because the correction rejection and miss rates are not independent 
of the hit and false alarm rates.  Show that:
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We only need measures of these two because the correction rejection and miss rates are not independent 
of the hit and false alarm rates.  Show that:

The corresponding correct rejection and miss rates are: 

p(correct rejection)  = 1 - p(false alarm), and p(miss) = 1 - p(hit),  respectively.

How should one compute weighted average for error rate?

‡ A graphical view of  the hit, false alarm rate as a function of the criterion

For a probability density (continuous distribution) function (i.e. a "PDF"), say p(x), the probability of a measurement X 
falling within a certain range is given by the area under the density over that range:

P(x1 <X < x2) = Ÿx1
x2pHxL „ x

P(X>XT) = ŸXT
¶ pHxL „ x

The criterion, and thus the hit and false alarm rates could be determined by the relative costs or benefits (loss or gain) one 
assigns to a particular choice of hit and false alarm rates. Suppose the criterion is XT, in general not at the cross-over point 
of the likelihoods (which would only be optimal for constant prior probabilities and the goal of minimizing average error). 
Then the hit rate (PH) is determined by the area under the  (signal or high) curve to the right of XT. The false alarm rate 
(PFA) is given by the area under the ("noise" or low) curve to the right of XT.
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In[21]:=
b = 15; d = 10; sigma = 4; max = 1.1;
ndistd = NormalDistribution@d, sigmaD;
ndistb = NormalDistribution@b, sigmaD;
max = PDF@ndistb, bD;
Manipulate@
g1 = Plot@8PDF@ndistd, xD, PDF@ndistb, xD,

HUnitStep@x - cD * Max@PDF@ndistb, xD, PDF@ndistd, xDDL<,
8x, -5, 30<, AxesLabel Ø 8"x", "p"<, Filling Ø Axis,
PlotRange Ø 80, max + 0.025<,
Epilog Ø 8Text@Style@"m=b", 7D, 8b, 0.11<D,

Text@Style@"m=d", 7D, 8d, 0.11<D<D;
g2 = Plot@81 - CDF@ndistd, xD, 1 - CDF@ndistb, xD,

HUnitStep@x - cD * H1 - CDF@ndistb, xDLL<, 8x, -5, 30<,
AxesLabel Ø 8"x", "Hit & FA"<D;

GraphicsGrid@88g1, g2<<D, 88c, b, "criterion"<, 0, 30<D

Out[25]=

criterion

‡ Manipulating criterion shifts to affect hit and false alarm rates (with no affect  on sensitivity)

A light is flashed, the photon counter indicates x photons received. The decision rule is:

if x > XT  guess "high switch caused the intensity measured"

if x<=XT  guess "low switch caused the intensity measured"

In general, where the criterion gets placed depends on the decision goal.  One could have other  goals (than minimizing 
error) that would determine where to put the criterion level.  Put yourself in the place of an ideal (not a MAP observer) 
with the following constraints:

If you were slapped on the wrist every time you said "high", you might never say high--you would never get any 
hits. This in effect pushes the criterion far to the right.

If you liked chocolates as much as I do, and received a sweet every time you said high, you might always say high, 
even if you thought the signal  was not presented-- after all, why not be optimistic? You would have many false        alarms. 
This pushes the criterion far  to the left.

So the goal doesn't have to be determined by maximizing the proportion of correct responses (minimizing error), it can be 
determined by other criteria, which in turn modify the decision rule. These other factors can be incorporated into a pay-off 
matrix (see Green and Swets, 1974). 

In that we haven't changed the means or standard deviations, d' hasn't changed. Hit and correct rejection rates trade-off 
against each other. You can get more hits but at the expense of making more false alarm mistakes. (Recall correction 
rejection rate = 1 - hit rate). It seems like there should be some way to calculate d' from the hit and false alarm rates. We'll 
see how to do that shortly.

Later we will look at formalizing and generalizing the notions of costs and benefits as statistical decision theory. For 
example, the cost to an error in an estimate of illumination can be low as compared to a cost in the error of face 
identification.
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Later we will look at formalizing and generalizing the notions of costs and benefits as statistical decision theory. For 
example, the cost to an error in an estimate of illumination can be low as compared to a cost in the error of face 
identification.

‡ Modify log likelihood rule to allow for  various decision criteria

Thus we can see that one could derive a simple modification of the log likelihood rule:

Rather than testing: 

log[
pIx SH M

pIx SLM
] >  0?, 

instead we decide using:

 log[
pIx SH M

pIx SLM
]> k?, (equivalent to 

pIx SH M

pIx SLM
> ek )

where k is a function of the costs and benefits. Optimal decisions are based on the value of likelihood ratio. This ratio (or 
any monotonic function of it) is called the decision variable. The photon (or dot) count is a decision variable. More 
generally, a decision variable may or may not lead to optimal performance. For example, you may base your decision on 
counting dots in just the bottom half of the screen.

‡ Relationship between signal-to-noise ratio (d') and hit and false alarm rates.

We are now ready to show how to estimate the signal-to-noise ratio "inside an observer's head" using only performance 
measures of hit and false alarm rates. We noted that the signal-to-noise ratio d' can be estimated from the means and 
standard deviation. But if we don't have access to those numbers (as happens in psychophysics), it turns out that with a bit 
of mathematics, one can show that d' can be obtained from the hit and false alarm rates using the following formula:

d' = z HPFAL - z HPHL

where z(p) is the z-score given a probability p. 

The figure below illustrates the relationship between probability P and z using the standard normal density (i.e. gaussian 
with zero mean and a standard deviation of 1):
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P=Ÿz
¶gauss@x, 0, 1D „ x. And z(p) is the inverse. 

There is no simple formula for z, but there are good closed-form approximations. Mathematica doesn't give the direct 
formula for the z-score, but it does supply the inverse of the erf[] function, which comes from the engineering (rather than 
statistics) tradition:

erf HzL =
2

p
‡
0

z
e-t2 d t

As you will use in Assignment #1, the z-score function is related to the InverseErf function by:

In[26]:=
z@p_D := Sqrt@2D InverseErf@1 - 2 pD;

Humans vs. ideals: Modeling internal variability of the human observer

The basic idea: human observers are sub-ideal, but may be "ideal-like" 
The idea is to model the human signal discrimination  as being "ideal-like" in assuming that human decisions respect an 
implicit generative model:

H = SH : x = bh + noise';

H = SL: x = dh+ noise';

where bh, dh, and noise' are the equivalent states of the world (corresponding to the two effective means of the human 
observer) that could give rise to the human's d', as measured from hit and false alarm rates:

d'human = z HPFAhumanL - z HPHhumanL

It is as if the human visual system is optimal, but with the wrong generative model--i.e. a different state of the world. The 
d' for human, is determined by hit and false alarm rates, or equivalently by: 

d' for human = bh-dh
sh , 

Note that there is indeterminancy in these "implicit" variables, bh, dh, and sh (the standard deviation of noise') -- there is 
an infinite family of combinations of bh, dh, and sh  which give the same d'.

How good is the model? One way of testing it is to plot hit and false alarm rates for human decisions and compare them to 
this "sub-ideal" that has additive gaussian noise with equal variances. Surprisingly often, the linear, gaussian generative 
model fits are quite good. But first, lets see how we can make an absolute comparison of performance.
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It is as if the human visual system is optimal, but with the wrong generative model--i.e. a different state of the world. The 
d' for human, is determined by hit and false alarm rates, or equivalently by: 

d' for human = bh-dh
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Note that there is indeterminancy in these "implicit" variables, bh, dh, and sh (the standard deviation of noise') -- there is 
an infinite family of combinations of bh, dh, and sh  which give the same d'.

How good is the model? One way of testing it is to plot hit and false alarm rates for human decisions and compare them to 
this "sub-ideal" that has additive gaussian noise with equal variances. Surprisingly often, the linear, gaussian generative 
model fits are quite good. But first, lets see how we can make an absolute comparison of performance.

Comparing ideal and human performance
For the light discrimination problem, the physics of the experiment determines the generative model, i.e. the mean levels  
d, b and the standard deviation. We have seen that the ideal's performance is characterized by one number called the 
sensitivity d'. Now that we understand the limitations on the performance of an ideal observer, let us try to understand how 
to compare human performance to the ideal. Even if the ideal is making near perfect discriminations, the human observer 
may not be doing so well because of other sources of uncertainty. For example, the ideal may be contending with the 
following situation:

We can't "see" or directly measure the distributions that the human observer is using to make the decision, but we can 
suppose that it is based on distributions that are in effect much closer together:

Or they could be noisier--i.e. bigger standard deviation than the ideal is coping with. 

Although the the separation between these two distributions and their standard deviations  are not directly measurable in a 
human subject, we can measure the hit and false alarm rate to estimate d’ :

d' for human = z Hfalse alarm rate for humanL - z H hit rate for humanL
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‡ Statistical efficiency

Given the means to compute d' for the ideal and for the human observer in the same task, we can compare them. Usually 
we calculate the ideal's d' from the signal-to-noise ratio, and the human's from the hit and false alarm rate in a yes/no task 
or from the proportion correct in a 2AFC task (as in the experiment below). (The ideal's d' could be calculated from its hit 
and false alarm rates but this usually isn't as convenient--but Monte Carlo simulations might serve as a good way to 
double-check that you are doing the right calculations.)

With these two d's in hand we can compare the performances of the two observers. One way is in terms of statistical 
efficiency.  Efficiency is defined as the number of samples (e.g. photons in our light discrimination example) required by 
the ideal divided by the number of samples required by the human, when they are performing equivalently (e.g. same hit 
and false alarm rates). If d' is estimated from hit and false alarm scores, it can be shown that:

Statistical efficiency = Hd ' for human êd ' for idealL2. 

(It is the reciprocal of this if the d' represents the physical signal to noise ratios at threshold. See Kersten and Mamassian, 
2008)

‡ Historical note -- Quantum Efficiency  accounting for the missing  information
In 1962, Horace Barlow reported results on the measurements quantum efficiency for light discrimination (rather than 
detection) under low light (scotopic) conditions similar to those of Hecht et al., and came up with a figure for QE of about 
10%.  That is, the human observer behaved like an ideal observer who was only receiving one out of every ten photons. 
Where was the photon loss coming from? Like we saw for Hecht et al., Barlow traced the losses to reflection, scatter and 
absorption by the optic media,  and losses due to photons falling in the spaces between the rods, and an imperfect isomeriza-
tion efficiency. Recall that a figure of 10% is close to what one would predict from Hecht et al.'s experiment.

Barlow later went one step beyond Hecht et al.. He concluded (Barlow, 1977) that there was still a residual 
inefficiency even after taking into account all the above causes, which he calculated as accounting for only 80% of the 
photon loss. He was left with about 50% of human discrimination efficiency due to limitations in the brain's ability to 
"count" point events. That is, for example, if 100 photons are incident on at the cornea of the eye, about 20 of these are 
reliably transduced and this information is sent to the brain. But he argued, the brain deals with this average of 20 photons 
with 50% efficiency--that is, the ideal's "brain" could discriminate just as well with only an average of 10 photons. Barlow 
made this latter conclusion by a clever argument involving  a psychophysical experiment in which he had observers 
discriminate differences in dot density (rather than photon density) on a CRT screen. The idea was that although the 
presence of a photon at the retina does not necessarily make it to the brain, a dot will.

Psychophysical tasks & techniques: Yes/No & 2AFC

Testing our assumptions: The Receiver Operating Characteristic (ROC) for a Yes/No 
task
Although we can't directly measure the internal distributions of a human observer's decision variable, we've seen that we 
can measure hit and false alarm rates, and thus d'. But one can do more, and actually test to see if an observer's decisions 
are consistent with Gaussian distributions with equal variance. If the criterion is varied, we can obtain a set of n data 
points: 

{(hit rate 1, false alarm rate 1), (hit rate 2, false alarm rate 2), ..., (hit rate n, false alarm rate n)} 

all from one stimulus condition (i.e. from one signal-to-noise ratio, call it dideal'). This is because as the hit rate varies, so 
does the false alarm rate (see the above figures showing how hit and false alarm rates relate to area under the signal and 
noise distributions.). One could compute the d' for each pair and they should all be equal for the ideal observer. Of course, 
we would have to make a large number of measurements for each one--but on average, they should all be equal. 

To get meaningful and equal d's for each pair of hit and false alarm rates assumes that the underlying relative 
separation of the signal and noise distributions remain unchanged and that the distributions are Gaussian, with equal 
standard deviation.  We might know this is true (or true to a good approximation) for the ideal, but we have no guarantee 
for the human observer. Is there a way to check? Suppose the signal and noise distributions look like:
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Although we can't directly measure the internal distributions of a human observer's decision variable, we've seen that we 
can measure hit and false alarm rates, and thus d'. But one can do more, and actually test to see if an observer's decisions 
are consistent with Gaussian distributions with equal variance. If the criterion is varied, we can obtain a set of n data 
points: 

{(hit rate 1, false alarm rate 1), (hit rate 2, false alarm rate 2), ..., (hit rate n, false alarm rate n)} 

all from one stimulus condition (i.e. from one signal-to-noise ratio, call it dideal'). This is because as the hit rate varies, so 
does the false alarm rate (see the above figures showing how hit and false alarm rates relate to area under the signal and 
noise distributions.). One could compute the d' for each pair and they should all be equal for the ideal observer. Of course, 
we would have to make a large number of measurements for each one--but on average, they should all be equal. 

To get meaningful and equal d's for each pair of hit and false alarm rates assumes that the underlying relative 
separation of the signal and noise distributions remain unchanged and that the distributions are Gaussian, with equal 
standard deviation.  We might know this is true (or true to a good approximation) for the ideal, but we have no guarantee 
for the human observer. Is there a way to check? Suppose the signal and noise distributions look like:

If we plot the hit rate vs. false alarm rate data on a graph as the criterion xc varies, we get something that looks like:
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b = 15; d = 10; sigma = 4;
ndistd = NormalDistribution@d, sigmaD;
ndistb = NormalDistribution@b, sigmaD;
max = PDF@ndistb, bD;

Manipulate@
g1 = Plot@8PDF@ndistd, xD, PDF@ndistb, xD,

HUnitStep@x - cD * Max@PDF@ndistb, xD, PDF@ndistd, xDDL<,
8x, -5, 30<, AxesLabel Ø 8"x", "p"<, Filling Ø Axis,
PlotRange Ø 80, max + 0.025<,
Epilog Ø 8Text@"m=b", 8b, 0.11`<D, Text@"m=d", 8d, 0.11`<D<D;

g2 = Plot@81 - CDF@ndistd, xD, 1 - CDF@ndistb, xD,
HUnitStep@x - cD * H1 - CDF@ndistb, xDLL<, 8x, -5, 30<D;

g3 = ParametricPlot@881 - CDF@ndistd, xD, 1 - CDF@ndistb, xD<<,
8x, -100, 100<,
FrameLabel -> 88"Hits", ""<, 8"False Alarms", "ROC curve"<<,
PlotRange Ø 880, 1<, 80, 1<<, Frame Ø True, AspectRatio Ø 1,
Epilog Ø 8Point@81 - CDF@ndistd, cD, 1 - CDF@ndistb, cD<D<D;

GraphicsGrid@88g1, g2, g3<<D, 88c, b, "criterion"<, 0, 30<D

criterion

So is there a way to spot whether our gaussian equal-variance assumptions are correct for human observers?

If we take the same data and plot it in terms of Z-scores we get something like:
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In fact, if the underlying distributions are Gaussian, the data should lie on a straight-line. If they both have equal variance, 
the slope of the line should be equal to one. This is because:

(1)Z Hhit rateL =
Xc - ms

ss

(2)Z Hfalse alarm IntegrateL =
Xc - mn

sn

And if we solve for the criterion Xc, we obtain:

(3)Z Hhit rateL =
sn

ss
Z Hfalse alarm rateL -

ms - mn

ss

(I've switched notation here, where b = ms, and d = mn). The main point of this plot is to see if the data tend to fall on a 
straight line with slope of one. If a straight line, this would support the Gaussian assumption. A slope = 1 supports the 
assumption of equal variance Gaussian distributions.

In practice, there are several ways of obtaining an ROC curve in human psychophysical experiments. One can vary 
the criterion that an observer adopts by varying the proportion of times the signal is presented. As observers get used to the 
signal being presented, for example, 80% of the time, they become biased to assume the signal is present. One needs to 
block trials in groups of, say 400 trials per block, where the signal and noise priors are fixed for a given block.

One can also use a rating scale method in which the observer is asked to say how confident she/he was (e.g. 5 
definitely, 4 quite probable, 3 don't know for sure, 2, unlikely, 1 definitely not). Then we can bin the proportion of "5's" 
when the signal vs. noise was present to calculate hit and false alarm rates for that rating, do the same for the "4's", and so 
forth. The assumption is that an observer can maintain not just one stable criterion, but four---the observer has in effect 
divided up the decision variable (x) domain  into 5 regions. An advantage of the rating scale method is efficiency--
relatively few trials are required to get an ROC curve. Further, in some experiments, ratings seem psychologically natural 
to make. But if there is any "noise" in the decision criterion itself, e.g. due to memory drift, or whatever, this will act to 
decrease the estimate of d' in both yes/no and rating methods.

Usually rather than manipulating the criterion, we would rather do the experiment in such a way that it does not 
change. Is there a way to reduce the problem of a fluctuating criterion?
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The 2AFC (two-alternative forced-choice) method

‡ Relating performance (proportion correct) to signal-to-noise ratio, d'. 

In psychophysics, the most common way to minimize the problem of a varying criterion is to use a two-alternative forced-
choice procedure (2AFC). In a 2AFC task the observer is presented on each trial a pair of stimuli. One stimulus has the 
signal (e.g. high flash), and the other the noise (e.g. low flash). The order, however, is randomized. So if they are pre-
sented temporally, the signal or the noise might come first, but the observer doesn't know which from trial to trial. In the 
spatial version, the signal could be randomly positioned on the left of the computer screen with the noise on the right, or 
vice versa. One can show that for 2AFC:

(4)d' = - 2 z Hproportion correctL

As before, the Z-score can be calculated from the inverse of a standard mathematical function called Erf[] to get Z from a 
measured P.  

In[40]:=
z[p_] := Sqrt[2] InverseErf[1 - 2 p];

where Z(*) is the z-score for Pc , the proportion correct. And then,

dprime[x_] := N[-Sqrt[2] z[x]]

Exercise: Prove d' = - 2 z Hproportion correctL. See Homework Assignment #1.

If you want to prove this for yourself, here are a couple of hints--actually, a lot of hints. Let us imagine we are giving the 
light discrimination task to the ideal observer. We have two possibilities for signal presentation: Either the signal is on the 
left and the noise on the right, or the signal is on the right and the noise on the left. There are two ways of being right. The 
observer could say "on the left" when the signal is on the left, or "on the right" when the signal is on the right. For exam-
ple, for the light detection experiment, a reasonable guess is that all the ideal observer would have to do is to count the 
number of photons on the left side of the screen and count the number on the right too. If the number on the left is bigger 
than the number on the right, the observer should say that the signal was on the left. Thus, a 2AFC decision variable would 
be the difference between the left and right decision variables, where each of these  is what we calculated for the yes/no 
experiment.

(5)r = rL - rR
For example as you will see in Assignment 1, rL and rR for the SKE observer would be the dot products of the signal 
pattern template with observation image vectors on the left and right sides.

So, the probabililty of being correct is: 

pc = p(r > 0 | signal on left) p(signal on left) + p( r < 0 | signal on right)p(signal on right)

What is the probability distribution of r? Well, from probability rules (see: ProbabilityOverview.nb), 

average(r) = m2 - m1 = ms - mn

var(r) = var(rL)+var(rR), so sr  = 2 srL= 2 srR

(Because the mean of the sum of two independent random variables is the sum of their means and that the variance of the 
sum is the sum of the variances.)

If the signal is equally likely to appear on the left or the right,the probability of being correct is the area under the curve to 
the right of zero of the distribution of r:
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What is the probability distribution of r? Well, from probability rules (see: ProbabilityOverview.nb), 

average(r) = m2 - m1 = ms - mn

var(r) = var(rL)+var(rR), so sr  = 2 srL= 2 srR

(Because the mean of the sum of two independent random variables is the sum of their means and that the variance of the 
sum is the sum of the variances.)

If the signal is equally likely to appear on the left or the right,the probability of being correct is the area under the curve to 
the right of zero of the distribution of r:

HNote in the abov e figure: r = rL - rR = xL - XR, and m2 - m1 = ms - mn = b - dM

Exercise: Show that the area under the ROC curve is equal to the proportion correct in a two-alternative 
forced-choice experiment (Green and Swets). 

Sometimes, sensitivity is operationally defined as the area under the ROC curve. This provides a single summary number, 
even if the standard definition of d’ is inappropriate, for example because the variances are not equal, or the distributions 
are not gaussian.

Statistical efficiency: competing with the ideal observer in a 2AFC task

‡ Set up the mini-experiment

Let's develop the dot density experiment you piloted last time. We'll make two improvements. First we'll turn it into a two-
alternative forced-choice experiment. You'll experience how this makes the task subjectively easier, and reduces the 
problem of criterion fluctuation. Second, we will calculate your and the ideal's proportion correct, turn these into d's, and 
from there calculate your statistical efficiency. In 1997, Barlow reported an efficiency near 50%. How good are you?

As above, let's define a Poisson distribution with a mean of mean, with a function to draw a sample from this distribution.

For most psychophysical experiments it is a good idea to give the observer some practice trials. For these,  let highmean = 
300 for the "high" setting, and lowmean =200 for the "low" setting.  Set numtrials=10; This will give you easy trials to 
get the hang of it
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For the actual measurements, you want to make the task hard enough so that mistakes are made (why?). So make the task 
harder by setting highmean = 220 for the "high" setting, and lowmean =200 for the "low" setting.  Set numtrials=100;

z@p_D := Sqrt@2D InverseErf@1 - 2 pD;
dprime@x_D := N@-Sqrt@2D z@xDD;
dotsize = 0.01;
numberofphotons@mean_D := RandomInteger@PoissonDistribution@meanDD;
highmean = 220; lowmean = 200;
data = 88"Was I Correct?", "Was Ideal Correct?"<<;

numtrials = 10;

blank = Graphics@8PointSize@dotsizeD, Black, Point êü 88<, 8<<<,
AspectRatio Ø 1, Frame Ø False, FrameTicks Ø None,
Background Ø GrayLevel@0.0D, PlotRange Ø 88-0.2, 1.2<, 8-0.2, 1.2<<D;

flash = blank;

CreateDocument@Dynamic@flashD, ShowCellBracket Ø False,
WindowSize Ø 8300, 300<,
WindowMargins Ø 88Automatic, 0<, 8Automatic, 0<<, WindowElements Ø 8<,
Background Ø Black, NotebookFileName Ø "Flash Display"D;

4_IdealObserverAnalysisoldstyle.nb 19



twoflashes := Module@8tempmean<,
Table@whichflash = RandomInteger@80, 1<D;

If@whichflash ã 1, leftnumsample = numberofphotons@highmeanD,
leftnumsample = numberofphotons@lowmeanDD;

If@whichflash ã 0, rightnumsample = numberofphotons@highmeanD,
rightnumsample = numberofphotons@lowmeanDD;

leftsample = Table@RandomReal@80, 1<, 2D, 8leftnumsample<D;
flash = Graphics@8PointSize@dotsizeD, Red, Point êü leftsample<,

AspectRatio Ø 1, Frame Ø False, FrameTicks Ø None,
Background Ø GrayLevel@0.0D,
PlotRange Ø 88-0.2`, 1.2`<, 8-0.2`, 1.2`<<D;

Pause@.25D; flash = blank; Pause@.25D;

rightsample = Table@RandomReal@80, 1<, 2D, 8rightnumsample<D;
flash = Graphics@8PointSize@dotsizeD, Red, Point êü rightsample<,

AspectRatio Ø 1, Frame Ø False, FrameTicks Ø None,
Background Ø GrayLevel@0.`D,
PlotRange Ø 88-0.2`, 1.2`<, 8-0.2`, 1.2`<<D;

Pause@.25D; flash = blank;

myanswer = ChoiceDialog@"Did the signal Hhigh densityL appear on",
8"First?" Ø 1, "Second?" Ø 0<, WindowSize Ø 8300, 80<,
WindowMargins Ø 88Automatic, 0<, 8Automatic, 330<<D;

If@myanswer ã whichflash, WasICorrect = 1, WasICorrect = 0D;
idealanswer = If@leftnumsample > rightnumsample, 1, 0D;
If@idealanswer ã whichflash, WasIdealCorrect = 1, WasIdealCorrect = 0D;
data = Append@data, 8WasICorrect, WasIdealCorrect<D, 8numtrials<D;

D

‡ Execute a trial

Now, randomly turn the switch to "high" or "low", draw a sample, and then input your response (1 for "high" and 0 for 
"low). Execute the next cell 100 times. 

twoflashes
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‡ Display the data

data êê MatrixForm

Was I Correct? Was Ideal Correct?
1 1
0 0
0 1
1 1
1 1
1 1
0 1
1 1
1 1
0 1

‡ Analyze the data

Let's drop the table heading stored in row 1, and then transpose the matrix so that the columns become the rows:

data2 = Transpose@Drop@data, 1DD

881, 0, 0, 1, 1, 1, 0, 1, 1, 0<, 81, 0, 1, 1, 1, 1, 1, 1, 1, 1<<

Let's use a combination of Map[ ] and Count[ ] (used earlier to make histograms) to count up all occurrences of  an event 
type. So the total for myhits is:

myproportioncorrect =
N@Map@Count@data2@@1DD, ÒD &, 81<D ê Dimensions@data2D@@2DDD@@1DD;

idealproportioncorrect =
N@Map@Count@data2@@2DD, ÒD &, 81<D ê Dimensions@data2D@@2DDD@@1DD;

mydprime = dprime@myproportioncorrectD;
idealdprime = dprime@idealproportioncorrectD;
mystatisticalefficiency = Round@100 * Hmydprime ê idealdprimeL^2D;

Print@
Style@
Grid@88"my prop correct", "ideal's prop correct", "my d'",

"ideal's d'", "my efficiency H%L"<,
8myproportioncorrect, idealproportioncorrect, mydprime,
idealdprime, mystatisticalefficiency<<, Frame Ø AllD, 9DD;

my prop correct ideal's prop correct my d' ideal's d' my efficiency H%L

0.6 0.9 0.358287 1.81239 4
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To get a reliable estimate, you need at least 100 or more trials. 

‡ Adaptive procedures for finding thresholds using 2AFC or yes/no

What can you do if the human psychophysical observer is making lots of mistakes or alternatively getting all the trials 
right? The above method is called the "method of constant stimuli", because (although the stimuli really aren't constant), 
the conditions (highmean and lowmean) are. Adaptive or tracking methods are more efficient. The idea is to have a 
computer program automatically hunt for that threshold (e.g. highmean is adjusted) so that the observer is getting a 
prescribed proportion correct (e.g. 75%). There have been a number of advances in the art of efficiently finding values of a 
signal which produce a certain percent correct in a psychophysical task such as 2AFC. For more on this, see the QUEST 
procedure of Watson and Pelli (1983) and the analyses of Treutwein (1993).

Next time

Probability overview
From dots to image intensity patterns: What does the eye see best?
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‡ Computing the ideal observer for patterns

‡ Comparing psychophysical performance for pattern detection with properties of visual neurons in the 

brain

Appendix

Figure code

gauss@x_, m_, s_D := PDF@NormalDistribution@m, sD, xD
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b = 15; d = 10; sb = 3; sd = 4;
p1 = Plot@8gauss@x, b, sbD, gauss@x, d, sdD<, 8x, -5, 30<,

Background Ø GrayLevel@1D, AxesLabel Ø 8"x", "p"<, PlotRange Ø 80, 0.15`<,
Prolog Ø 8Text@"\!\H\*SubscriptBox@\Hm\L, \H1\LD\L", 8d, 0.11`<D,

Text@"\!\H\*SubscriptBox@\Hm\L, \H2\LD\L", 8b, 0.143`<,
80.1`, 0.1`<D, Text@"\!\H\*SubscriptBox@\Hs\L, \H1\LD\L",
8d + 2, 0.06`<D, Text@"\!\H\*SubscriptBox@\Hs\L, \H2\LD\L",
8b + 2, 0.06`<D, Line@88b, 0.055`<, 8b + 4, 0.055`<<D,

Line@88d, 0.055`<, 8d + 4, 0.055`<<D, Line@88d, 0<, 8d, 0.1`<<D,
Line@88d - 2, 0<, 8d - 2, 0.11`<<D,
Text@"\!\H\*SubscriptBox@\Hx\L, \HT\LD\L", 8d - 2, 0.12`<D,
Line@88b, 0<, 8b, 0.13`<<D<D

m1

m2

s1 s2

xT

-5 0 5 10 15 20 25 30
x

0.02

0.04

0.06

0.08

0.10

0.12

0.14

p

z@p_D := Sqrt@2D InverseErf@1 - 2 pD;
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cumulgauss@x_, m_, s_D := CDF@NormalDistribution@m, sD, xD;
Plot@cumulgauss@x, 0, 1D, 8x, -4, 4<D

-4 -2 2 4

0.2

0.4

0.6

0.8

1.0
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hitrate = N@Table@1 - cumulgauss@xt, d, sdD, 8xt, 10, 20, 2<DD;
falsealarmrate = N@Table@1 - cumulgauss@xt, b, sbD, 8xt, 10, 20, 2<DD;
ROC = Table@8hitratePiT, falsealarmratePiT<, 8i, Length@hitrateD<D;
ListPlot@ROC, PlotRange Ø 880, 1.1`<, 80, 1.1`<<,
AxesLabel Ø 8"False alarm rate", "Hit rate"<, AspectRatio Ø 1,
Prolog Ø AbsolutePointSize@5DD

0.0 0.2 0.4 0.6 0.8 1.0
False alarm rate0.0

0.2

0.4

0.6

0.8

1.0

Hit rate

dg = ListPlotBz@ROCD, AxesLabel Ø 8"Z@False alarm rateD", "Z@Hit rateD"<,

AspectRatio Ø 1, PlotRange Ø 88-1, 4<, 8-3, 5<<,

Prolog Ø :AbsolutePointSize@5D, TextB"x intercept=
m2 - m1

s2
", 82, 4.0<F,

TextB"Slope=
s1

s2
", 83.2, 1<F>F;

z@ROCD

880., -1.66667<, 80.5, -1.<, 81., -0.333333<,
81.5, 0.333333<, 82., 1.<, 82.5, 1.66667<<
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Fit@z@ROCD, 81, x<, xD

-1.66667 + 1.33333 x

fg = Plot@Evaluate@Fit@z@ROCD, 81, x<, xDD, 8x, -1, 4<,
PlotRange Ø 88-1, 4<, 8-3, 5<<D;

Show@dg, fgD

x intercept=
m2 - m1

s2

Slope=
s1

s2

-1 1 2 3 4
Z@False alarm rateD

-2

2

4

Z@Hit rateD

Probability and statistical sampling

How to use Mathematica to generate probability distributions, cumulative distributions and do 
statistical sampling. 

Distributions and densities
The probability of x photons being detected by an ideal detector is given by the Poisson distribution:
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poisson[x_,a_] := Exp[-a] a^x / Factorial[x];

where a is the mean. 

Exercise: What is the probability of detecting 12 photons if the mean is 10? Generate more than 20 values and then use 
the function Apply[Plus,t1], to demonstrate that the sum over all values is 1.

Whenever it is convenient in this course, we will make use of predefined functions in Mathematica.

Let's define a Poisson distribution with a mean of 20: 

pdist = PoissonDistribution[20];

The probability distribution function (PDF is given by: 

PDF[pdist,x]

20x

‰20 x!

You can obtain the mean, variance and standard deviation of the distribution we've defined. Try it:

Mean[pdist]
Variance[pdist]
StandardDeviation[pdist]

20

20

2 5

The output shows Mathematica's  definition of the function. The "If"'s test to make sure that x is not negative and is an 
integer. The rest of the definition should look familiar. In this lecture, we make use of the fact that the continuous normal 
density can provide a good approximation to the Poisson distribution when the mean is large enough and if we set the 
standard deviation to Sqrt[20]:

ndist = NormalDistribution[20,4.47214];
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N[PDF[pdist,28]]
N[PDF[ndist,28]]

0.0181472

0.0180105

The cumulative distribution
The cumulative distribution gives the probability that the detector signals x<k photons. It is obtained by adding up the 
probabilities for all values less than k. For the cumulative density function, we integrate over all values less than k.   Here 
is the cumulative distribution for the discrete Poisson distribution with a mean of 20:

Plot@CDF@pdist, xD, 8x, 10, 40<D

15 20 25 30 35 40

0.2

0.4

0.6

0.8

1.0

What is the probability of detecting 50 or less photons when the mean is 20? It is virtually certain-- as you can see from 
the graph, the probability is almost 1. Here is the plot of the continuous normal distribution with a mean of 20, and a 
standard deviation of Sqrt[20]:
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Plot@CDF@ndist, xD, 8x, 10, 40<D
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